IoT (Internet of Things) - The Code Exchange

The Code Exchange
Syteline Associates
Go to content

Main menu:

Definitions/Terms


Internet of things


The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.
The definition of the Internet of Things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems.[5] Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation), and others all contribute to enabling the Internet of Things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.

Smart home

IoT devices are a part of the larger concept of home automation, which can include lighting, heating and air conditioning, media and security systems.
Long-term benefits could include energy savings by automatically ensuring lights and electronics are turned off.
A smart home or automated home could be based on a platform or hubs that control smart devices and appliances.

Medical and healthcare

The Internet of Medical Things (IoMT), (also called the Internet of health things), is an application of the IoT for medical and health related purposes, data collection and analysis for research, and monitoring. The IoMT has been referenced as "Smart Healthcare", as the technology for creating a digitised healthcare system, connecting available medical resources and healthcare services.
IoT devices can be used to enable remote health monitoring and emergency notification systems. These health monitoring devices can range from blood pressure and heart rate monitors to advanced devices capable of monitoring specialised implants, such as pacemakers, Fitbit electronic wristbands, or advanced hearing aids.
Some hospitals have begun implementing "smart beds" that can detect when they are occupied and when a patient is attempting to get up. It can also adjust itself to ensure appropriate pressure and support is applied to the patient without the manual interaction of nurses.
A 2015 Goldman Sachs report indicated that healthcare IoT devices "can save the United States more than $300 billion in annual healthcare expenditures by increasing revenue and decreasing cost." Moreover, the use of mobile devices to support medical follow-up led to the creation of 'm-health', used "to analyse, capture, transmit and store health statistics from multiple resources, including sensors and other biomedical acquisition systems".
Specialized sensors can also be equipped within living spaces to monitor the health and general well-being of senior citizens, while also ensuring that proper treatment is being administered and assisting people regain lost mobility via therapy as well.
These sensors create a network of intelligent sensors that are able to collect, process, transfer, and analyze valuable information in different environments, such as connecting in-home monitoring devices to hospital-based systems.

Industrial applications

Industrial Internet of Things
Also known as IIoT, industrial IoT devices acquire and analyze data from connected equipment, (OT) operational technology, locations and people.
Combined with operational technology (OT) monitoring devices, IIOT helps regulate and monitor industrial systems.

Manufacturing

The IoT can realize the seamless integration of various manufacturing devices equipped with sensing, identification, processing, communication, actuation, and networking capabilities. Based on such a highly integrated smart cyber-physical space, it opens the door to create whole new business and market opportunities for manufacturing. Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control bring the IoT within the realm of industrial applications and smart manufacturing as well.
The IoT intelligent systems enable rapid manufacturing of new products, dynamic response to product demands, and real-time optimization of manufacturing production and supply chain networks, by networking machinery, sensors and control systems together.
Digital control systems to automate process controls, operator tools and service information systems to optimize plant safety and security are within the purview of the IoT.
But it also extends itself to asset management via predictive maintenance, statistical evaluation, and measurements to maximize reliability.
Industrial management systems can also be integrated with smart grids, enabling real-time energy optimization. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by a large number of networked sensors.
Industrial IoT (IIoT) in manufacturing could generate so much business value that it will eventually lead to the Fourth Industrial Revolution, also referred to as Industry 4.0. The potential for growth from implementing IIoT may generate $12 trillion of global GDP by 2030.

Design architecture of cyber-physical systems-enabled manufacturing system
Industrial big data analytics will play a vital role in manufacturing asset predictive maintenance, although that is not the only capability of industrial big data.
Cyber-physical systems (CPS) is the core technology of industrial big data and it will be an interface between human and the cyber world. Cyber-physical systems can be designed by following the 5C (connection, conversion, cyber, cognition, configuration) architecture, and it will transform the collected data into actionable information, and eventually interfere with the physical assets to optimize processes.
An IoT-enabled intelligent system of such cases was proposed in 2001 and later demonstrated in 2014 by the National Science Foundation Industry/University Collaborative Research Center for Intelligent Maintenance Systems (IMS) at the University of Cincinnati on a bandsaw machine in IMTS 2014 in Chicago.
Bandsaw machines are not necessarily expensive, but the bandsaw belt expenses are enormous since they degrade much faster. However, without sensing and intelligent analytics, it can be only determined by experience when the band saw belt will actually break. The developed prognostics system will be able to recognize and monitor the degradation of band saw belts even if the condition is changing, advising users when is the best time to replace the belt. This will significantly improve user experience and operator safety and ultimately save on costs.



services@thecodeexchange.com

Software Support Services
The Code Exchange
Back to content | Back to main menu